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Turbulence Closure 

The often used turbulence closure models are based on Boussinesq’s eddy 

viscosity concept: 
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 Zero-equation turbulence models 

 Mixing length model 

 Subgrid model 

 

 Two-equation turbulence models 

 Standard k-ε turbulence model 

 RNG k-ε turbulence model 

 Nonequilibrium k-ε turbulence model 

 k-ω turbulence model 

 

 Other advanced models: Non-linear k-ε turbulence model, Reynolds 

stress/flux model, algebraic Reynolds stress/flux model, LES, DNS, etc. 
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Movable Bed Roughness Formula 
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Wu and Wang (1999, JHE)  



The existing movable bed roughness formulas are applicable only in cases 

with sediment grains, ripples and dunes.  

 

In general, there are other contributors to the channel roughness, including 

channel training works, hydraulic structures, vegetation, alternate bars, islands, 

channel curvature, and alignment.  

 

The most reliable approach to handling the channel roughness is still 

calibration using the available data measured at the study site. 

 

In the cases where the banks and bed have different roughness features or 

floodplains exist, composite Manning’s n or conveyance should be used.  

 

Good references for Manning’s n:  Chow (1959), Fasken (1963), Barnes 

(1967), and Hicks and Mason (1991).  USGS web site 

http://wwwrcamnl.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/index.htm 

 

Comments on Manning’s n 
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http://wwwrcamnl.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/index.htm


• For Bed Load 

– Lb: Related to the scales of dominant bed forms and 

channel geometry 

 

• For Suspended Load 

 

 

– : Determined by empirical formula such as Armanini and 

di Silvio’s (1988) method; or given 0.25-1.0. 

 

• For Bed Material Load 

– L=max(Lb, Ls) 

sks UhL 

Sediment Adaptation Length 
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Lags between Flow and Sediment 

 Lag between local flow and sediment velocities  

 Considered in two-phase flow models, but usually ignored in most 

models available. 

 Depth-averaged velocity difference 

 Considered 

 Sediment deposition and erosion at the bed 

 Considered 

 Bed form development, etc. 

 Less known and need to be investigated. 
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Ratio of Depth-Av. Sediment and Flow Velocities 
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Bed-Load Velocity 
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Wu et al. (2000) Bed Load Formula 
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Wu et al. (2000) Suspended Load Formula 
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Single-sized total load 

Ackers-White (1973) formula is good for coarse sediment, not for fine sediment 

Laursen (1958) formula is good for fine sand and silt, not for coarser sediment 

Yang’s (1973, 1984) formula has two sets of coefficients for sand and gravel 

Wu et al. (2000) and Engelund-Hansen (1967) are good for wider size ranges 

 

Sing-sized bed load 

Wu et al. (2000) formula 

Meyer-Peter and Mueller (1948) formula  

 

Single-sized suspended load 

Zhang (1961) formula 

 

Multiple-sized total load 

Wu et al. (2000) formula is the top choice 

 

*: Ultimately, calibration using measurements is the most reliable approach. 

Reliable Transport Capacity Formulas 
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Bed Material Sorting 
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Bed Material Composition in Mixing Layer: 
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Bank Erosion 

• Planar Failure Method (Osman and Thorne, 1988) 
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CCHE1D Simulation Results 
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Channel Degradation (Newton, 1951) 
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Degradation using Different L 
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Degradation using Different Mixing Layer Thickness 
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Channel Aggradation 

 

Configuration of Experiment (SAFHL, 1995) 
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Size Classes 
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In-stream Hydraulic Structures 

Measuring flume in Goodwin Creek, MS 
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DEC Low Drop Structure 
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Erosion in Pa-Chang River 
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Erosion Control Analysis 
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Danjiangkou Reservoir in Han River, China 
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Annual Sediment Deposition in Danjiangkou Reservoir 
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Distance upstream from the Dam (km)

A
c
c
u

m
u

la
te

d
D

e
p

o
si

ti
o

n
(1

0
8
to

n
s)

0 50 100 150
0

1

2

3

4

5

6
Measured

Simulated

Deposition Profile in Danjiangkou Reservoir 
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Three Gorges Reservoir 

TGP 

Main Stream: 756.32 km (368 CSs) 

Jialing River reach: 72.17 km (30 CSs) 

Wu River reach: 86.8 km (45 CSs) 

 

Sediment sizes: 0.001 ~ 250 mm 

Two time periods are simulated: 

•May 11 ~ December 31, 2003 

•January 1, 2004 ~ December 31, 2005 
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Three Gorges Reservoir (Cont’d) 

Cuntan 

Qingxichang Wanxian  

• Jan 1, 2004 ~ Dec 31, 2005 

 

• Station:  

     Cuntan (604.12 km to the dam) 

     Qingxichang (479.3 km to the dam) 

     Wanxian (291.61 km  to the dam) 
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FASTER2D Simulation Results 
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Flow in Gangjiang River with Multiple Dikes 
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Hysteresis of Flow and Sediment Transport 

Measured vs. calculated bed-load discharges  

(Run TM07) 
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High Flow during 1996 Flood  
in Lower Yellow River (90 km Long) 
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Low Flow during 1996 Flood  
in Lower Yellow River (90 km Long) 
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Flow Discharge in Lower Yellow River during 1982 
Flood 
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Sediment Concentration in Lower Yellow River 
during 1982 Flood 
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Water Surface Contours in the Study Reach of East Fork River 
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Flow Field in a Bend of the East Fork River 
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Flow Discharge at Outlet in the Study Reach of the East Fork River  
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Sediment Discharge at Outlet in the Study Reach of the East Fork River  



Helical Flow 
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where Us and Un are the depth-av. velocities in 

streamwise and lateral directions, βI is a coefficient 

determining the magnitude of I, Ta is the adaptation 

time scale, DI is the dispersion coefficient, and η is 

the dimensionless distance in lateral direction (Wu 

and Wang, 2004). 

   An example distribution of I is shown in the figure.   

Curved Channels 
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Distribution of I in a cross section: 



Transport Angle of Bed Load 

b
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Helical flow effect: 

r
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Odgaard (1986) 

where ub and vb are the near-bed flow velocities in the x and y directions 

where δb is the angle between bed-load and the main flow direction 
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Transport Angle of Bed Load 

Bed slope effect: 

Parker (1984) 

Struiksma et al. (1985) and Sekine and Parker (1992) 

where zb is the bed level, n is the lateral direction, and βb is a coefficient.  

where φ is the lateral inclination of the bed, and Θ is the Shields number. 
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where φ is bed slope angle and ϕr is the repose angle. 
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Dispersion of Suspended Load 
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Dispersion of Momentum 
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Effects of Helical Flow 

Calculated velocity contours without and with helical flow 

effect in Steffler’s 270o bend (Wu and Wang, 2004) 
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Measured vs. calculated velocities at selected cross-sections in Steffler’s 270o 

bend (Calculations with and without helical flow effect, Wu and Wang, 2004) 
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FAST3D Simulation Results 
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FAST3D Model Validation in Channel Bend  

Flow depths: (a) Measured by Odgaard and Bergs (1988) 

 and (b) Simulated by Wu et al. (2000) 

51 



FAST3D Simulation of Sedimentation  
Upstream of TGP Dam 

Flow pattern upstream of 

TGP dam simulated using 

FAST3D model (Fang 

and Rodi, 2000) 
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Flow velocity and 

bed surface at 

cross-sections 

(Fang and Rodi, 

2000) 

FAST3D Simulation of Sedimentation  
Upstream of TGP Dam 
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Local Scour near Instream Structures 



Complexity of Flows near Structures 
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Significant Local Flow Features  

 Localized dynamic pressure 

 Horseshoe and other vortices 

 Downward flow 

 Turbulence intensified locally 

 Pressure and shear stress fluctuations 

 Flow unsteadiness 

 Gravity effect on bed load 

 Etc. 
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Forces on Sediment Particles 

Effective tractive force per unit bed 

area in streamwise direction: 
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Generalized buoyancy force on a 

particle: 

where pd is dynamic pressure, d is sediment diameter, and a is coefficient assumed as 4/p. 
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Corrected Critical Shear Stress 
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Downward flow 
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 is flow impact angle to the bed 

 is repose angle and  bed 
angle. 
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Local Scour around a Bridge Pier 

Scour depth contour at 

final time; simulation by 

FAST3D (Wu, 2007) 
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Local Scour around a Bridge Pier 



Measured Maximum Scour Depth (m)
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Local Scour around a Bridge Pier 
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Headcut Migration 
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Headcut is an abrupt vertical or nearly 

vertical drop in stream bed, known as 

knickpoint. It may migrate upstream 

and cause significant soil erosion and 

channel instability.. 

Flow near 

a headcut 

Headcut erosion model 

(Wu and Wang, 2005) 



Headcut Migration 
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Simulation by Wu and Wang (2005) 



Depth-Averaged 2-D Modeling of Local 

Scour (FASTER2D) 
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Depth-Averaged 2-D Formulation 

with 

Wu and Wang (ICSF-1, 2002): 
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2-D Model Used (FASTER2D) 

• 2-D shallow water equations 

• Standard k-ε turbulence model 

• Finite volume method on curvilinear grid 

• SIMPLEC algorithm on collocated grid, with Rhie 
and Chow’s momentum interpolation 

• Hybrid, QUICK, HLPA convection schemes 

• SIP (Strongly Implicit Procedure) 
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2-D Simulation of Local Scour at Bridge Pier 
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Note that the erosion pattern looks reasonable but the deposition not. 
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Validation of 2-D Model 

Measured Maximum Scour Depth (m)

S
im

u
la

te
d

M
ax

im
u
m

S
co

u
r

D
ep

th
(m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Perfect Agreement

+20% Error

-20% Error
34 cases in total: 

6 spur-dikes,  

3 square piers,  

25 cylindrical 

piers. 

69 



Local Scour Prediction Contest in ICSF-1 

Experiment by Briaud et al., Texas A&M (2002) 

Flume:  

1.5 m wide 

30.5 m long 
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Case Description 
Measured Max. 

Scour Depth 

Calculated Max. 

Scour Depth 

Case 1: 160 mm diameter circular pier 

placed in clean sand deposit of 0.3 mm in 

diameter and subjected to a constant 

velocity of 0.35 m/s and a depth of 0.375 

m over a period of one day. 

0.183 m 0.182 m 

Case 2: 160 mm diameter circular pier 

placed in clean sand deposit of 0.3 mm 

and subjected to a multi-velocity 

hydrograph over a period of 4 days (25 

m/s in day 1 and 0.35 m/s in day 2, and then 

each once in days 3 & 4). 

0.185 m 0.205 m 

Blind 2-D prediction using FASTER2D  

(Wu and Wang, 2002) 
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Concluding Remarks 

• 3-D flow features, such as localized dynamic pressure, 
downward flow, vorticity and turbulence, need to be 
considered in simulation of local scour near in-stream 
structures. 

• A modification approach is proposed to extend the existing 
sediment entrainment functions to rapidly-varied (strongly 
non-uniform) flow conditions. 

• The enhanced 3-D model predicts well the processes of bridge 
pier scour and headcut migration. 

• The 2-D model with a simplified modification predicts 
reasonably well the maximum erosion depth, but errors exist in 
the deposition pattern behind the pier.  

• The entrainment functions have not been directly validated by 
lab and field measurement data; all validations reported are 
indirect in conjunction with numerical models. 

72 



W. Wu, W. Rodi, and T. Wenka (2000). “3-D numerical modeling of water flow and sediment 

transport in open channels.” J. Hydraulic Eng., ASCE, 126(1), 4–15. 

W. Wu and S.S.Y. Wang (2002). “Prediction of local scour of non-cohesive sediment around bridge 

piers using FVM-based CCHE2D model,” Proc. First International Conference on Scour of 

Foundations, Texas A&M University, Nov. 17-20. (on CD Rom) 

W. Wu, D. A. Vieira, and S. S.Y. Wang (2004). “A 1-D numerical model for nonuniform sediment 

transport under unsteady flows in channel networks,” J. Hydraulic Eng., ASCE, 130(9), 914–923. 

W. Wu (2004). “Depth-averaged 2-D numerical modeling of unsteady flow and nonuniform sediment 

transport in open channels,” J. Hydraulic Eng., ASCE, 130(10), 1013–1024. 

W. Wu and S.S.Y. Wang (2004a). “Depth-averaged 2-D calculation of flow and sediment transport in 

curved channels,” Int. J. Sediment Research, 19(4), 241–257. 

W. Wu, P. Wang, and N. Chiba (2004). “Comparison of five depth-averaged 2-D turbulence models 

for river flows,” Archives of Hydro-Engineering and Environmental Mechanics, Polish Academy of 

Science, 51(2), 183–200.   

W. Wu, E. Jiang, and S. S.Y. Wang (2004). “Depth-averaged 2-D calculation of flow and sediment 

transport in the Lower Yellow River,” Int. J. River Basin Management, IAHR, 2(1). 

W. Wu and S. S.Y. Wang (2005). “Empirical-numerical analysis of headcut migration,” Int. J. 

Sediment Research, 20(3), 233–243. 

W. Wu, M. Altinakar, and S.S.Y. Wang (2006). “Depth-average analysis of hysteresis between flow 

and sediment transport under unsteady conditions,” Int. J. Sediment Research, 21(2), 101–112. 

W. Wu (2007), Computational River Dynamics, Taylor & Francis, UK, 494 p. 

Publications Related 

73 


