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Turbulence Closure R

The often used turbulence closure models are based on Boussinesq’s eddy
Viscosity concept:
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» Zero-equation turbulence models
» Mixing length model
» Subgrid model

» Two-equation turbulence models
» Standard k-¢ turbulence model
» RNG k-¢ turbulence model
» Nonequilibrium k-¢ turbulence model
» K- turbulence model

» Other advanced models: Non-linear k-¢ turbulence model, Reynolds
stress/flux model, algebraic Reynolds stress/flux model, LES, DNS, etc.




Movable Bed Roughness Formula
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Comments on Manning’s n B

The existing movable bed roughness formulas are applicable only in cases
with sediment grains, ripples and dunes.

In general, there are other contributors to the channel roughness, including
channel training works, hydraulic structures, vegetation, alternate bars, islands,
channel curvature, and alignment.

The most reliable approach to handling the channel roughness is still
calibration using the available data measured at the study site.

In the cases where the banks and bed have different roughness features or
floodplains exist, composite Manning’s n or conveyance should be used.

Good references for Manning’s n: Chow (1959), Fasken (1963), Barnes
(1967), and Hicks and Mason (1991). USGS web site
http://wwwrcamnl.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/index.htm



http://wwwrcamnl.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/index.htm
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Sediment Adaptation Length B

 For Bed Load

— L,: Related to the scales of dominant bed forms and
channel geometry

* For Suspended Load
L. =Uh/aw,,

— au. Determined by empirical formula such as Armanini and
di Silvio’s (1988) method; or given 0.25-1.0.

 For Bed Material Load
— L=max(L,, L)
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Lags between Flow and Sediment B

U Lag between local flow and sediment velocities

O Considered in two-phase flow models, but usually ignored in most

models available.

U Depth-averaged velocity difference

1 Considered

L Sediment deposition and erosion at the bed

1 Considered

1 Bed form development, etc.

1 Less known and need to be investigated.
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Ratio of Depth-Av. Sediment and Flow Velocities
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Bed-Load Velocity

Modified van Rijn’s (1984) formula

U,

0.5
=1.64T

9 -
sk | Francis, 7.5 mm

A Luque and van Beek, 0.9 mm
7L + Luque and van Beek, 1.8 mm

X Luque and van Beek, 3.3 mm

O Lee and Hsu, 1.36 mm
6F v Lee and Hsu, 2.47 mm
. Modified van Rijn's formula
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Wau et al. (2000) Bed Load Formula B
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Wu et al. (2000) Suspended Load Formula
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Reliable Transport Capacity Formulas ]

Single-sized total load
Ackers-White (1973) formula is good for coarse sediment, not for fine sediment
Laursen (1958) formula is good for fine sand and silt, not for coarser sediment
Yang’s (1973, 1984) formula has two sets of coefficients for sand and gravel
Wu et al. (2000) and Engelund-Hansen (1967) are good for wider size ranges

Sing-sized bed load
Wu et al. (2000) formula
Meyer-Peter and Mueller (1948) formula

Single-sized suspended load
Zhang (1961) formula

Multiple-sized total load
Wu et al. (2000) formula is the top choice

*: Ultimately, calibration using measurements is the most reliable approach.
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Bed Material Sorting ALY
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Bank Erosion ‘

 Planar Failure Method (Osman and Thorne, 1988)
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CCHELD Simulation Results
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Channel Degradation (Newton, 1951) ]
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Degradation using Different L B
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Degradation using Different Mixing Layer Thickness m
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Channel Aggradation ]

45m >

Configuration of Experiment (SAFHL, 1995)
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Size Classes
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m "
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m-

In-stream Hydraulic Structures

v

Measuring flume in Goodwin Creek, MS
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m-

DEC Low Drop Structure
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Erosion in Pa-Chang River el
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Erosion Control Analysis B

Thalweg Elevation (m)
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Danjiangkou Reservoir in Han River, China [N

. g 4 ) ™
Baihe Station Hanjiang River

Huanglongtan Station

Danpangkou Dam
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Annual Sediment Deposition in Danjiangkou Reservoir

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.
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Deposition Profile in Danjiangkou Reservoir
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Three Gorges Reservoir ]

2 Jialing River o,

i Main Stream: 756.32 km (368 CSs)
f Jialing River reach: 72.17 km (30 CSs)

Wu River

o Wu River reach: 86.8 km (45 CSs)

Wulong

% Sediment sizes: 0.001 ~ 250 mm
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Sedunent Concentration (ke ny')

Three Gorges Reservoir (Cont’d)
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FASTERZ2D Simulation Results
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Flow in Gangjiang River with Multiple Dikes SN
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Hysteresis of Flow and Sediment Transport

Sediment discharge (g/m/s)
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h Flow during 1996 Flood
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Dazhangzhuang - Jiahetan




Low Flow during 1996 Flood
In Lower Yellow River (90 km Long)

Dazhangzhuang - Jiahetan
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Flow Discharge (m/s)

Flow Discharge in Lower Yellow River during 1982
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Sediment Concentration in Lower Yellow River
during 1982 Flood
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Water Surface Contours in the Study Reach of East Fork River m
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Flow Field in a Bend of the East Fork River ]

39



Clarkson

Flow Discharge at Outlet in the Study Reach of the East Fork River

Measured
Calculated

Time (day)

_
00 6 4 2 O 00 6
— — — — —

(s/,w) 1813NO 1e sabreyasig moj-

40



Clarkson

Sediment Discharge at Outlet in the Study Reach of the East Fork River m
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Curved Channels

Helical Flow
Transversal velocity — linear model:

u, :Un+bsl(£— j
h

At channel centerline | :Ush/r =1 =(ii= ]
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Distribution of | in a cross section:
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where U, and U, are the depth-av. velocities in g o

streamwise and lateral directions, S, is a coefficient 081 o

determining the magnitude of I, T, is the adaptation 206l no o

time scale, D, is the dispersion coefficient, and n is %‘0,4_3

the dimensionless distance in lateral direction (Wu = O Measured

and Wang, 2004). o ekl

An example distribution of I is shown in the figure. O Distance from jnnet wall @y
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m ]

Transport Angle of Bed Load
Helical flow effect:

h
Engelund (1974) tano, = 7—
r

where 9, is the angle between bed-load and the main flow direction
Vb

Odgaard (1986) tano, = m
b

where u,, and v, are the near-bed flow velocities in the x and y directions
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Transport Angle of Bed Load
Bed slope effect:

1+ o
Parker (1984) %on _ tan O, - pie 1/®C tang
qbs ;ts:uc @

where ¢ is the lateral inclination of the bed, and ® is the Shields number.

Struiksma et al. (1985) and Sekine and Parker (1992)

qbn — tan5 IBb éDZb
qbs n

where z,, is the bed level, n is the lateral direction, and b is a coefficient.

Qpxe  Tollpy + AT SINQ, /SING,
Wu (2004) = : :
Oy ThOh, + AT SINQ, /SING,

where ¢ is bed slope angle and ¢, is the repose angle.
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Dispersion of Suspended Load

Longitudinal velocity:
U, -V, _1 (1+ 2.3Iog%)

U. K Q&
m /
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X- velocity:

U=ca, U, +o,uU,

m+1  (z)'" h( .z
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Concentration distribution: ¢ =Cf(z)
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m .

Integration of x- convection term:

/Z 1/m "
\hj f(z)dz+a12Uanof(z)dz

+a, ,bU.C gjoh \2% —lj f(z)dz

m+1

h
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1/m
Using [ f(z)dz=h, m—”O“(Ej f(z)dz~h leads to

m h
E j
h
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m ]

Dispersion of Momentum

2D, b2
D, = _p{m(m N 2) 0‘110511Us2 + manalzlu - 3 = Q0| 2}
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Effects of Helical Flow

(b). With helical flow effect

Calculated velocity contours without and with helical flow
effect in Steffler’s 270° bend (Wu and Wang, 2004)
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FAST3D Simulation Results
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FAST3D Model Validation in Channel Bend [
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Flow depths: (a) Measured by Odgaard and Bergs (1988)
and (b) Simulated by Wu et al. (2000)
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FAST3D Simulation of Sedimentation
Upstream of TGP Dam

Flow pattern upstream of
TGP dam simulated using
FAST3D model (Fang
and Rodi, 2000)
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FAST3D Simulation of Sedimentation

Flow velocity and
bed surface at
Cross-sections

(Fang and Rodl,
2000)
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L_ocal Scour near Instream Structures
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Complexity of Flows near Structures
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Significant Local Flow Features
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V. V.V VYV V V VYV V

_ocalized dynamic pressure
Horseshoe and other vortices

Downward flow

Turbulence intensified locally
Pressure and shear stress fluctuations
Flow unsteadiness

Gravity effect on bed load

Etc.
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Forces on Sediment Particles

Generalized buoyancy force on a
particle:

——— Dynamic
Pressure

Jet

Effective tractive force per unit bed
area in streamwise direction:

where p, is dynamic pressure, d is sediment diameter, and a is coefficient assumed as 4/p.
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Corrected Critical Shear Stress
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m ]

z-c — KpKd KSTCO

Dynamic pressure gradient in vertical direction

1 OPq
(os —p)g 0Oz

K, =1+

p

Downward flow

Ky =1/(1+sin S)

B is flow impact angle to the bed

Gravity over steep slope

Ks — Sin(¢_¢)/8in ¢ ¢ is repose angle and o bed
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Sediment Transport Capacity sl

Modified Van Rijn’s formulas

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng. 39



Local Scour around a Bridge Pier
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Scour depth contour at
final time; simulation by
FAST3D (Wu, 2007)
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Local Scour around a Bridge Pier
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m ]

Scour Depth (m)
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Local Scour around a Bridge Pier B

Simulated Maximum Scour Depth (m)

Cylinder, Sheppard et al.
Cylinder, Ettema
Cylinder, Yanmaz and A.
2 Square, Yanmaz and A.

> N

Perfect Agreement

10™ _ 10°
Measured Maximum Scour Depth (m)
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Headcut Migration

Clarkson

Headcut is an abrupt vertical or nearly
vertical drop In stream bed, known as
knickpoint. It may migrate upstream
and cause significant soil erosion and
channel instability..

Approach Flow

E Mappe
_ Escape Flow
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¥ >
Faoller _..,-".'7
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Flow near
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Criginal Wertical
(_‘_’_‘,—f Surface

Criginal Bed

Mlew Vertica
Surace

1 2

Headcut erosion model
(Wu and Wang, 2005)
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Headcut Migration ]

] Measured, Run 2
Simulated, Run 2

[ Measured, Run 2
Simulated, Run 2
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Depth-Averaged 2-D Modeling of Local
Scour (FASTER2D)
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Depth-Averaged 2-D Formulation ]

Wu and Wang (ICSF-1, 2002):

T. =« max(r —— fdpg 8sz
e t b1
6 0S

with 03
¢ _ 34D, f, D, <50
52.5D*f, D, >50

D, =d[g(p,/p-1)/v*]"

o 1/m o 1/m
G . _ n)2 _ _ 2
o, = (—]D xMe 0P dx} /D‘ xMe 0oPo) dx}
Oo0 /|0 0
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2-D Model Used (FASTER2D) PR

2-D shallow water equations
Standard k-¢ turbulence model
Finite volume method on curvilinear grid

SIMPLEC algorithm on collocated grid, with Rhie
and Chow’s momentum interpolation

Hybrid, QUICK, HLPA convection schemes
SIP (Strongly Implicit Procedure)
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UNIYERSITY

2-D Simulation of Local Scour at Bridge Pier

Note that the erosion pattern looks reasonable but the deposition not.

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng. 68



Validation of 2-D Model

Clarkson

34 cases In total:
6 spur-dikes,

3 square piers,
25 cylindrical
piers.

Simulated Maximum Scour Depth (m)

0.4

0.35

o
w

0.25

o
()

0.15

©
[EEN

0.05

Perfect Agreement

u ,
m -
-,

,

-20% Error

|

Measured Maximum Scour Depth (m)

0.4
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L_ocal Scour Prediction Contest in ICSF-1 e

Experiment by Briaud et al., Texas A&M (2002)
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m ]

Blind 2-D prediction using FASTER2D
(Wu and Wang, 2002)

Case Description

Measured Max.
Scour Depth

Calculated Max.
Scour Depth

Case 1. 160 mm diameter circular pier
placed in clean sand deposit of 0.3 mm in
diameter and subjected to a constant
velocity of 0.35 m/s and a depth of 0.375
m over a period of one day.

0.183 m

0.182 m

Case 2: 160 mm diameter circular pier
placed in clean sand deposit of 0.3 mm
and subjected to a multi-velocity

hydrograph over a period of 4 days (25
m/s in day 1 and 0.35 m/s in day 2, and then

each once in days 3 & 4).

0.185m

0.205m
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Concluding Remarks ]

3-D flow features, such as localized dynamic pressure,
downward flow, vorticity and turbulence, need to be
considered in simulation of local scour near in-stream
structures.

A modification approach is proposed to extend the existing
sediment entrainment functions to rapidly-varied (strongly
non-uniform) flow conditions.

The enhanced 3-D model predicts well the processes of bridge
pier scour and headcut migration.

The 2-D model with a simplified modification predicts
reasonably well the maximum erosion depth, but errors exist In
the deposition pattern behind the pier.

The entrainment functions have not been directly validated by
lab and field measurement data; all validations reported are
Indirect in conjunction with numerical models.
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